Practice Tests Set 22 – Paper 1F mark scheme

Question	Working	Answer	Mark	Notes
1		7, 58, 123, 180, 202	1	B1
				Total 1 mark

Q	Working	Answer	Mark	Notes
2		7	1	B1 70
		$\overline{10}$		oe eg $\frac{10}{100}$
				Total 1 mark

Q	Working	Answer	Mark	Notes
3		15	1	B1
				Total 1 mark

Q	Working	Answer	Mark	Notes
4		0.015, 0.15, 0.155, 1.15, 1.5	1	B1
				Total 1 mark

Q	Working	Answer	Mark	Notes
5	eg 35 × 3 ÷ 5 or 7 × 3 or $\frac{3}{5}$ × 35		2	M1 for a complete method
		21		A1
				Total 2 marks

Qı	lestion	Working	Answer	Ma	ırk	Notes
6	(a)		18	1	B1	
	(b)(i)	eg 66 - 15 - 9 - 3 - "18" or 66 - (7.5 × "6") or 66 - 45		2	M1ft	ft their 18 from part (a)
			21		Alft	ft their 18 from part (a) eg $66 - 15 - 9 - 3$ – their answer to part (a)
	(ii)		$3\frac{1}{2}$ diagrams drawn	1	B1ft	follow through their 21 from (b)(i)
						Total 4 marks

(Juestion	Working	Answer	Mark	Notes		
7	(a)		3.76	1	B1		
	(b)		Arrow pointing at 0.04	1	B1		
	(c)		5.7	1	B1 4	Allow 5,7	
							Total 3 marks

Quest	ion	Working		Answer			Notes
8 (a)				2	B2	Fully correct answer (allow $-1t$)
							(B1 for $7p$ or $-t$)
(b)	eg $8 \times 5 - 3 \times 4$ or $40 - 12$			2	M1	for a complete method
				28		A1	
							Total 4 marks

Question	Working	Answer	Mark	Notes
9 (a)		a^5	1	B1
(b)		24 <i>bc</i>	1	B1 oe
(c)		3x + 12	1	B1 or $12 + 3x$
				Total 5 marks

Question	Working	An	swer		Mark	Notes
10		BL, BM, BS	2	B2	for all 9 combi	nations with no extras or repeats
		CL, CM, CS	, ,			
		DL, DM, DS		(B1	for at least 4 co	prrect combinations (ignoring repeats))
						Total 2 marks

Question	Working	Answer	Mark	Notes
11 (a)		(-1, 3)	1	B1
(b)		(5, 1)	2	B1 for $x = 5$
				B1 for $y = 1$
(c)	$\frac{1}{2} \times 6 \times 4$ oe		2	M1 for a correct method
		12		A1
(d)		D indicated at $(-1, -1)$	1	B1 label not required if coordinate clearly indicated
				Total 5 marks

Question	Working	A	nswer		Mark	Notes	
12 (a)		47	1	B1 o	be		
		100					
(b)		49	2	B2 o	e accept 0.92	45 or 92(.45)%	
		53					
				(B1 f	or ^C where	$c < 53$ or $\frac{49}{2}$ where $d > 49$)	
				1	$\frac{1}{53}$	$\frac{d}{d}$ where $\frac{d}{d}$	
							Total 3 marks

Question	Working	Answer	Mark	Notes
13 (a)		3	1	B1
(b)		7	1	B1
				Total 2 marks

Question	Working	Answer	Mark	Notes
14 (a)		Parallelogram drawn	1	B1
(b)(i)		Pyramid	1	B1 accept square based pyramid or rectangular based pyramid
(ii)		5	1	B1 Allow five
				Total 3 marks

Question	Working			Ans	swer	Mark	Notes
15	(-1, -3)(0, -1)(1, 1)(2,			3 H	B3	for a correct line betwee	n x = -1 and x = 4
	3) (3, 5) (4, 7)	between $x = -1$ and	nd x				
		= 4		H		6	e segment through at least 3 of
						(-1, -3)(0, -1)(1, 1)(2	(3, 5) (4, 7)
						(11) $((1)$ (2) (0)	
						or for all of $(-1, -3)(0,$ joined	-1) (1, 1) (2, 3) (3, 5) (4, 7) plotted but not
						Joined	
				В	81	for at least 2 correct poin	nts stated (may be in a table) or plotted
							a positive gradient through $(0, -1)$
						or for a line with a gradi	
							Total 3 marks

Question	Working	Answer	Mark	Notes
16 (a)		Pentagon	1	B1
(b)		acute angle clearly indicated with 'A'	1	B1 allow either angle or both acute angles indicated
(c)		reflex angle clearly indicated with ' <i>R</i> '	1	B1 accept either the interior reflex angle, or any of the exterior reflex angles, if labelled outside of the shape with an arc
				Total 3 marks

Question	Working	Answer	Mark		Notes
17 (a) (i)			35	1	B1 if answer line is blank, check the diagram
(ii)	vertically opposite angles are equal or vertic	cally <u>opposite</u> <u>angles</u> are equal		1	B1
(b) (i)	(<i>BEC</i> =) 180 – 90 – 35 (= 55) or (<i>BEH</i> =) 35	5 + 90		2	M1 for a method to find angle <i>BEC</i> or <i>BEH</i>
			125		A1 if answer line is blank, check the diagram
(ii)	eg <u>Angles</u> in a <u>triangle</u> add to 180° (allow an <u>Angles</u> in a <u>triangle</u> sum to 180° (allow angl <u>Angles</u> on a straight <u>line</u> add to 180° (allow The <u>exterior angle</u> of a triangle is <u>equal</u> to the	es in a <u>triangle</u> sum to <u>180°</u>) angles on a straight <u>line</u> add to <u>180°</u>)		1	B1 (dep on M1) for one correct reason
					Total 5 marks

Question	Working	Answer	Mark	Notes
18		$3c^4 + 12c^3$	2	B2 for $3c^4 + 12c^3$
				(B1 for $3c^4$ or $12c^3$)
				Total 2 marks

Qu	estion	Working	Answer	Mark	Notes
19	(a)		7534	1	B1
	(b)	eg 3600 – 3574 or 3745 – 3600		2	M1 for 3600 – "number" or "number" – 3600
					where "number" contains the digits 3,4,5,7.
					Must have attempted to evaluate this calculation
			26		A1 cao
					Total 3 marks

Question	Working	Answer	Mark		Notes
20	$\frac{8}{3}(+)\frac{15}{4} \text{ or } (2)\frac{8}{12}(+)(3)\frac{9}{12} \text{ or } (2)\frac{8a}{12a}(+)(3)\frac{9}{12} \text{ or } (2)\frac{8a}{12a}(+)(3)\frac{8a}{12$	$(3)\frac{9a}{12a}$	3	M1	for correct improper fractions or fractional part of numbers written correctly over a common denominator
	eg $\frac{8 \times 4 + 15 \times 3}{3 \times 4}$ or $\frac{32}{12} + \frac{45}{12}$ or $\frac{32a}{12a} + \frac{45a}{12a}$ or $2\frac{8}{12} + 3\frac{9}{12} = 5\frac{17}{12}$ oe	$\frac{a}{a}$		M1	for correct fractions with a common denominator of 12 or a multiple of 12
	$\frac{32}{12} + \frac{45}{12} = \frac{77}{12} = 6\frac{5}{12} \text{ or } 5\frac{17}{12} = 6\frac{5}{12}$ or if shows $6\frac{5}{12} = \frac{77}{12}$ at the beginning then s addition comes to $\frac{77}{12}$	shown show that the		A1	dep on M2 for a correct answer from fully correct working or shows that RHS = $\frac{77}{12}$ and fully correct working shows LHS = $\frac{77}{12}$
					Total 3 marks

Question	Working	Answer	Mark	Notes
21		Correct triangle	2	B2 For a fully correct triangle with arcs
				shown (B1 for a correctly sized
				triangle with no arcs shown or for an
				incorrectly sized triangle with arcs
				shown where $AC = BC$ or correct arcs
				not joined)
				(overlay required)
				Total 2 marks

Question	Working	Answer	Mark	Notes
22		add 489 to 13 203	2	B2 oe eg accept 489 + 13 203
				(B1 for sight of $489 \times 27 = 13\ 203$)
				Total 2 marks

Question	n Working Answer		Mark	Notes		
23 (a)	enlargement, enlarge, enlarged	Enlargement	3	B1 for enlargement with no mention of translate, reflect, rotate, move, flip		
	scale factor 3, SF 3, ×3, factor of 3, 'three' times	Scale factor 3		B1 for (scale factor =) 3 with no mention of a vector, line of symmetry or angle		
	allow (3, 0) 3, 0	Centre (3, 0)		B1 for (centre =) $(3, 0)$		
(b)		Triangle drawn at $(1, 4) (1, 6) (2, 4)$	1	B1 condone missing label		
				Total 4 marks		

Question	Working	Answer	Mark		Notes
Question 24 (a)(i) (ii) (iii) (iii) (iii)	Working y_1 zz^2 y_2 zz^2 y_1 zz^2 y_2 zz^2 y_3 zz^2 y_4 zz^2	Answer	Mark 3	B1 B1 B1	Notes $y = 1$ drawn $x = 2$ drawn $x + y = 7$ drawnAllow dashed lines or solid lines for graphscondone lack of labels if unambiguous
	Line length 2cm + but shaded area must be er the mark in (b)	nclosed for			

(b)	1	B1	correct region shaded – shaded in or out – labelled R or clear intention to be the required region (ft only for one vertical line, one horizontal line and one line with a negative gradient)
			Total 4 marks

Question	Working		Answer		Mark	Notes
25		1	1	B1		
						Total 1 mark

Question	Working	I	Answer		Mark	Notes
26		$5cd^2(2c^2+3d^2)$	2	101	$\frac{5cd^2(2c^2)}{c^2}$	$+3d^2$) ect partial factorisation eg $5(2c^3d^2+3cd^4)$ or
				<i>cd</i> 5c	$d^{2}(10c^{2}+15d)$ $d(2c^{2}d+3d)$	d^2) or $5d^2(2c^3 + 3cd^2)$ or $5c(2c^2d^2 + 3d^4)$ or
						Total 2 marks

Question	Working	A	Inswer	Mark	Notes
27		$\frac{y^2}{2x}$		for $\frac{y^2}{2x}$ oe eg $\frac{0.5y^2}{x}$, 0.	
				$\frac{y^p}{2x}$ where $p \neq 2$) oe	ng with 2 correct for B1] Total 2 marks

Question	Working	Answer	Mark	Notes
28 (i)			2	M1 for $(x \pm 9)(x \pm 1)$
				or for $(x+a)(x+b)$ with $ab = -9$ or
				a+b=8
		(x+9)(x-1)		A1 for correct factors
(ii)		-9, 1	1	B1 ft dep on factorising in the form
				(x+p)(x+q)
				Total 3 marks

Question	Working	An	swer		Mark	Notes
29	$3 \div 2 (=1.5 \text{ or } \frac{3}{2}) \text{ or } \text{ eg } \frac{51}{4(-0)}$ or $c = -1$		3	M1	for gradient, map or $1.5x (+c)$ oe	od to find gradient or the correct value of <i>c</i> y see a correct calculation or $\frac{3}{2}$ oe llow $c = -1, y = -1, (L =) mx - 1$ oe
	y = ``1.5"x (+ c) or y = mx - 1 or eg $y - 5 = m(x - 4)$	$y = \frac{3}{2}x - 1$		M1 A1	for use of $y = mx$ or for $(L =) 1.5x$ oe eg $y = 1.5x$ -	
		2				Total 3 marks

Question	Working	Answer	Mark	x Notes
30	$(4^n =)(2^2)^n$ or	2	M1	for writing $_{4^n}$ as $(2^2)^n$ or 2^{2n} or
	$(4^n =)2^{2n}$ or eg $2^k \div 2^{2n} = 2^x$			for writing each term in terms of 4 ie
	or			$2^k = 4^{\frac{1}{2}k}$ and $2^x = 4^{\frac{1}{2}x}$
	$2^{k} = 4^{\frac{1}{2}^{k}}$ and $2^{x} = 4^{\frac{1}{2}^{x}}$ or $\frac{4^{\frac{1}{2}^{k}}}{4^{n}} = 4^{\frac{1}{2}^{x}}$			If these things are seen in working, award this mark even if followed by incorrect working – if not a choice of methods
		k-2n	A1	allow 2^{k-2n}
				Total 2 marks

						Average s	scores of c	andidates	who achi	eved grade	:
Question	Skill tested	Mean score	Max score	Mean %	ALL	5	4	3	2	1	U
1	Integers	0.99	1	99	0.99	1.00	0.99	1.00	0.98	0.92	0.85
2	Decimals	0.90	1	90	0.90	0.96	0.95	0.93	0.85	0.67	0.44
3	Fractions	0.81	1	81	0.81	0.99	0.94	0.79	0.58	0.37	0.07
4	Decimals	0.52	1	52	0.52	0.83	0.59	0.39	0.18	0.14	0.07
5	Fractions	1.63	2	82	1.63	1.96	1.80	1.65	1.24	0.88	0.37
6	Graphical representation of data	3.50	4	88	3.50	3.83	3.72	3.61	3.12	2.76	1.26
7	Degree of accuracy	2.37	3	79	2.37	2.88	2.66	2.31	1.87	0.00	0.00
8	Expressions and formulae	3.06	4	77	3.06	3.83	3.52	2.98	2.28	0.92	0.34
9	Algebraic manipulation	2.32	3	77	2.32	2.81	2.52	2.35	1.79	1.22	0.60
10	Probability	1.39	2	70	1.39	1.88	1.64	1.20	0.88	0.45	0.00
11	Graphs	3.98	6	66	3.98	5.51	4.31	3.43	2.78	1.89	0.80
12	Probability	1.73	3	58	1.73	2.43	2.12	1.50	0.84	0.27	0.04
13	Integers	1.37	2	69	1.37	1.56	1.40	1.40	1.21	1.08	0.71
14	3D shapes and volume	1.90	3	63	1.90	2.32	2.09	1.76	1.51	0.00	0.00
15	Graphs	1.65	3	55	1.65	2.77	1.91	1.22	0.53	0.12	0.07
16	Angles, lines and triangles	1.68	3	56	1.68	2.24	1.87	1.51	1.16	0.70	0.22
17	Algebraic manipulation	1.02	2	51	1.02	1.62	1.16	0.85	0.48	0.09	0.00
18	Geometrical reasoning	2.44	5	49	2.44	3.88	2.95	1.66	0.96	0.49	0.19
19	Integers	1.36	3	45	1.36	1.95	1.59	1.20	0.67	0.47	0.11
20	Fractions	1.25	3	42	1.25	2.24	1.37	0.99	0.32	0.07	0.07
21	Construction	0.74	2	37	0.74	1.29	0.86	0.44	0.24	0.17	0.04
22	Integers	0.64	2	32	0.64	1.19	0.72	0.37	0.17	0.15	0.00
23	Transformation geometry	1.27	4	32	1.27	2.17	1.43	0.90	0.46	0.00	0.00
24	Graphs and Inequalities	1.21	4	30	1.21	2.42	1.44	0.78	0.34	0.14	0.06
25	Use of symbols	0.27	1	27	0.27	0.50	0.27	0.18	0.10	0.06	0.11
26	Algebraic manipulation	0.47	2	24	0.47	1.15	0.43	0.15	0.02	0.00	0.00
27	Use of symbols	0.40	2	20	0.40	0.92	0.37	0.17	0.10	0.00	0.00
28	Quadratic equations	0.55	3	18	0.55	1.28	0.45	0.34	0.06	0.00	0.00
29	Graphs	0.48	3	16	0.48	1.38	0.28	0.12	0.06	0.03	0.00
30	Powers and roots	0.07	2	4	0.07	0.23	0.02	0.00	0.00	0.00	0.00
		41.97	80	52	41.97	60.02	46.37	36.18	25.78	14.06	6.42

Suggested grade boundaries

Grade	5	4	3	2	1
Mark	53	41	31	20	10